1,关于人工智能的发展

同意楼主的观点。但国内的人工智能程度还远远不够。个人认为国内高校应该更注重统计学教育,提高非统计学专业学生的重视度,毕竟统计学是一切数据分析的基础
看你把 artificial intelligence 定义在什么领域. 俺幻想的 AI 跟霹雳游侠那车差不多. 最少也得有自动学习功能. 不然感觉就是 编好的程序 + 机器 永远按程序的步骤去执行..
所谓人工智能是一类技术的统称,真实存在且应用广泛,该类技术中最具代表性的即是智能机器人技术。目前发展程度最高的机器人在外观方面具备:高仿皮肤、复杂表情、流畅动作;在功能方面具备:自由人机对话、基本学习能力;在发展方面日本最为领先,已拥有的功能机器人包括:女性t台走秀机器人、小提琴机器人(在北京车展展出)、以及智能程度最高的阿莫西(在2010年长沙车展展出)。国内培养人工智能人才的高等院校以哈尔滨工业大学为代表。最先进机器人阿莫西智商已能达到8岁小孩。
我国研究AI的人还不够多,范围还不够广。主要还停留在机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能应与更多的技术结合,在更广的范围使用。还缺乏突破性的进展。

关于人工智能的发展

2,人工智能的演进

第一阶段:50年代人工智能的兴起和冷落人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(InternationalJointConferencesonArtificialIntelligence即IJCAI)。第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展日本1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。第四阶段:80年代末,神经网络飞速发展1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。第五阶段:90年代,人工智能出现新的研究高潮由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

人工智能的演进

3,人工智能的发展怎么样

人工智能是计算机科学的一个分支,英文缩写为AI(Artificial Intelligence)。人工智能的目的在于尝试使用计算机技术生产出与人类智能相似的智能机器,包括但不仅限于人工智能机器人、语言识别、图像识别等系统。人工智能的智能表现在对人的思维过程的模拟,但是人的思维过程并不简单,它包括识别、分析、比较、概括、判断、推理等等步骤,是一个复杂且高级的认识过程,因此人工智能是一门非常具有挑战性的科学。人工智能的概念大约诞生在20世纪50年代,到如今仅仅经历了60余年的发展之路,是一项非常高新的技术,被誉为二十一世纪三大尖端技术之一。人工智能虽然说是一门计算机科学的分支,但它在发展过程中还涉及到了心理学、哲学和语言学等学科,有学者甚至认为人工智能的发展几乎需要涉及自然科学和社会科学的所有学科,其范围远远超出计算机科学的范畴。我们可以把人工智能简单的拆开成“人工”与“智能”两个方面来理解,“人工”很简单,即人为制造的,那么“智能”是什么呢?智能从字面含义上来讲,就是智力与能力的合体。我们知道,人类可以通过学习与实践发展自己的智力与能力。也因此,人工智能在发展过程中,其核心问题就是如何帮助机器拥有推理、知识、规划、学习、交流、感知、移动和操作物体的等能力,并尝试构建出智力。依托于计算机技术的先天优势,学习知识对于人工智能而言可以说只是时间和存储空间的问题。自动化技术的发展,让人工智能拥有了移动与操作物体的能力。智能算法的发展,让人工智能在一定程度上也拥有了推理与交流的能力。人工智能与计算机的发展是分不开的。有学者总结,人工智能发展会面临着六大瓶颈,分别是数据瓶颈、泛化瓶颈、能耗瓶颈、语义鸿沟瓶颈、可解释性瓶颈和可靠性瓶颈。数据瓶颈是指“由于数据收集能力的不足、理论无偏性和数据随机性等条件的限制而导致数据失真、缺乏等数据缺陷。”我们简单的套在人工智能上来看,收集数据能力的不足可以理解成识别技术的不成熟,理论无偏性可以理解成获取数据的质量,数据随机性的限制可以理解成获取及处理数据的难易度。随着大数据技术的发展,人工智能已在数据方面取得了比较明显的进步。不过,目前人工智能的发展仍未完全突破数据瓶颈的问题,训练数据的增大对人工智能算法的提升效果仍然不够理想。泛化瓶颈是指人工智能在泛化能力提升上所遇到的困难。泛化能力是指“机器学习算法对新鲜样本的适应能力。”你可以将人工智能的泛化能力简单理解成自主学习能力与适应能力。通常来说,人工智能的各项能力,都需要通过大量的样本数据训练及算法规定来获得。在实验室的环境下,很多人工智能的各项能力均有不错表现。但是实际生活照比实验室环境而言,存在太多的不确定性,因此人工智能要想更好的落地,就需要拥有强大的泛化能力,以在应对突发情况及未知情况时能够给出合理的响应,更好的帮助人类。能耗瓶颈可以简单的理解为人工智能在应用等过程中所消耗能源大于它实际所产生的效益,即能耗成本过高。而在优化人工智能能耗问题的过程中,首当其冲的就是对算法的优化。就像人体的大脑大概只占体重的2%,但是却能占据人体总能耗的20%一样,算法对于人工智能能耗的影响也非常的大。随着智能算法的发展,人工智能在能耗瓶颈上也有所进步。例如奥地利科技学院、维也纳工业大学和麻省理工学院的研究者就成功训练了一种能够控制自动驾驶汽车的低能耗智能算法,这一算法仅仅使用了75000个参数与19个神经元,比之前减少了数万倍。语义鸿沟瓶颈是指人工智能缺乏真正的语言理解能力,无法根据上下文或常识理解一些容易产生歧义的语言,即听不懂“人话”。目前,人工智能在这一点上仍然没有显著的突破。可解释性瓶颈是指人工智能过于依赖模型中已有的数据,缺乏深层学习能力的缺陷。人工智能很容易学习一个东西是什么,但是很难明白一个东西究竟为什么会这样。如果人工智能不能理解知识或行为之间的深层逻辑,那么它在用已有模型去应对未知变量时,就很容易引起模型崩塌,类似于“死机”。目前,已有学者提出可以使用对抗网络与最优传输技术找到模型坍塌的原因,并提出改进模型,从几何映射的角度上尝试去突破人工智能的可解释问题,在理论上取得了一些进步。我们都遇到过电脑死机,这在一定程度上反映着可靠性|public domain可靠性瓶颈是指人工智能在系统可靠性上的不足。粗略来讲,可靠性主要包含设计可靠性、耐久性和可维修性三个方面。人工智能的设计可靠性可以简单的理解为它的算法是否可靠,它是否能在规定的条件下,完成预定的功能。例如自动汽车在行驶过程中,是否能够正确识别道路情况,并作出合理反应,很大程度上都要依靠自动驾驶系统的设计可靠性。耐久性和可维修性很简单,即能不能长久使用与能不能、方便不方便维修,维修的成本如何。现阶段的人工智能仍然存在很大的局限性,市面上应用的人工智能绝大多数为弱人工智能,而强人工智能的发展仍然存在很多的难题。但是不管人工智能在未来有多少难关需要克服,可以肯定的是,科技的发展会不断推动人工智能的发展,让人工智能可以帮助更多产业、更多市场主体中实现新的赋能与转型,最终完成为数字经济集约化发展提供不竭动力的光荣使命,为我们的美好未来添砖加瓦。

人工智能的发展怎么样


文章TAG:关于  人工智能  智能  发展  关于人工智能的发展历程  
下一篇